Note

Spherical Coulomb Functions: Recurrence Relations and Continued Fractions

> In this note we find continued fractions for the ratios $-\left(d F_{l} / d \rho\right) / F_{l}$ and $-\left(d G_{l} / d \rho\right) / G_{l}$, $F_{L}(\gamma, \rho)$ and $G_{L}(\gamma, \rho)$ being respectively the regular and the irregular spherical Coulomb functions of L th order.

1. Introduction

Consider the linear operators h_{L}^{+}and $\left.h_{L}^{-} \mid 1\right]$,

$$
\begin{equation*}
h_{L}^{ \pm}=\left(v_{L} \pm \frac{d}{d \rho}\right) / q_{L}^{1 / 2}, \quad v_{L}=\frac{L}{\rho}+\frac{\gamma}{L}, \quad q_{L}=1+\left(\frac{\gamma}{L}\right)^{2}, \tag{1.1}
\end{equation*}
$$

defined in the domain $D \equiv(0<\rho<+\infty,-\infty<\gamma<+\infty)$ for any positive integer: $L=1,2, \ldots$. Using (1.1) we can write the radial equations for the spherical Coulomb functions [2],

$$
\begin{equation*}
\left[\frac{d^{2}}{d \rho^{2}}+1-\frac{2 \gamma}{\rho}-\frac{L(L+1)}{\rho^{2}}\right] u_{L}(\gamma, \rho)=0 \tag{1.2}
\end{equation*}
$$

also defined in D and for any non-negative order ($L=0,1, \ldots$), in two different ways:

$$
\begin{align*}
h_{L}^{-} h_{L}^{+} u_{L} & =u_{L}, \tag{1.3a}\\
h_{L+1}^{+} h_{L+1}^{-} u_{L} & =u_{L} . \tag{1.3b}
\end{align*}
$$

For $L=0$ only Eq. (1.3b) exists.
On multiplying on the left (1.3a) by h_{L}^{+}and (1.3b) by h_{L+1}^{-}and comparing the results with (1.3b) and (1.3a), respectively, one has

$$
\begin{equation*}
u_{L+1}=h_{L+1}^{-} u_{L}, \quad u_{L-1}=h_{L}^{+} u_{L} . \tag{1.4}
\end{equation*}
$$

Multiplying the first Eq. (1.4) by $q_{L+1}^{1 / 2}$ and the second by $q_{L}^{1 / 2}$, and adding these products, one obtains the familiar three-term recurrence formula,

$$
\begin{equation*}
q_{L}^{1 / 2} u_{L-1}+q_{L+1}^{1 / 2} u_{L+1}=\left(v_{L}+v_{L+1}\right) u_{L} . \tag{1.5}
\end{equation*}
$$

The $u_{L}(\gamma, \rho)$ in all the previous equations may be written as

$$
\begin{equation*}
u_{L}(\gamma, \rho)=a F_{L}(\gamma, \rho)+b G_{L}(\gamma, \rho) \tag{1.6}
\end{equation*}
$$

where a and b are constants and $F_{L}(\gamma, \rho)$ and $G_{L}(\gamma, \rho)$ are, respectively, the regular and the irregular spherical Coulomb functions [2,3].

Each one of Eqs. (1.2) can be associated with a Riccati equation. Define

$$
\begin{equation*}
z_{L}=d\left[\log \left(1 / u_{L}\right)\right] /(d \rho)=-\frac{d u_{L}}{d \rho} / u_{L} \tag{1.7}
\end{equation*}
$$

Differentiating $z_{L}(\gamma, \rho)$ with respect to ρ and eliminating the term $\left(d^{2} u_{L} / d \rho^{2}\right) / u_{L}$ between the result so obtained and Eq. (1.2), one has

$$
\begin{equation*}
\frac{d z_{L}}{d \rho}=z_{L}^{2}+1-\frac{2 \gamma}{\rho}-\frac{L(L+1)}{\rho^{2}} \tag{1.8}
\end{equation*}
$$

The general integral of this equation is (we take $a / b=c$ in (1.6))

$$
\begin{equation*}
z_{L}=-\left(c d F_{L} / d \rho+d G_{L} / d \rho\right) /\left(c F_{L}+G_{L}\right) \tag{1.9}
\end{equation*}
$$

Note that for $\gamma=0$ the radial waves defined above become the spherical functions of a free wave. Accordingly, we have $[2,4]$

$$
\begin{equation*}
F_{L}(0, \rho)=f_{L}(\rho)=\rho j_{L}(\rho), \quad G_{L}(0, \rho)=g_{L}(\rho)=\rho n_{L}(\rho) \tag{1.10}
\end{equation*}
$$

where $j_{L}(\rho)$ and $n_{L}(\rho)$ are the spherical Bessel functions.

2. Recurrence Relations for the $z_{L}(\gamma, \rho)$

Introduce the functions $\omega_{L}(\gamma, \rho)$ and $\omega_{L}^{\prime}(\gamma, \rho)$ as follows:

$$
\begin{equation*}
\omega_{L}^{-}=v_{L+1}+z_{L}, \quad \omega_{L}^{+}=v_{L}-z_{L} \tag{2.1}
\end{equation*}
$$

By addition,

$$
\begin{equation*}
\omega_{L}^{-}+\omega_{L}^{+}=v_{L}+v_{L+1} \tag{2.2}
\end{equation*}
$$

and substituting (2.1) into (1.3) (see (1.1) and (1.7)),

$$
\begin{equation*}
q_{L+1}^{1 / 2} u_{L+1}=\omega_{L}^{-} u_{L}, \quad q_{L}^{1 / 2} u_{L-1}=\omega_{L}^{+} u_{L} \tag{2.3}
\end{equation*}
$$

If we eliminate ω_{1}^{-}and ω_{I}^{+}between Eqs. (2.2) and (2.3), we recover the three-term recurrence formula (1.5). But we can follow another line of thought: on multiplying Eqs. (2.3), with L changed into $L-1$ in the first, by each other, we obtain

$$
\begin{equation*}
\omega_{L-1}^{-} \omega_{L}^{+}=q_{L} \tag{2.4}
\end{equation*}
$$

or, according to (2.1),

$$
\begin{equation*}
z_{L-1}=-v_{L}+\frac{q_{L}}{v_{L}-z_{L}}, \quad z_{L}=v_{L}-\frac{q_{L}}{v_{L}+z_{L-1}} . \tag{2.5}
\end{equation*}
$$

Recurrence relations (2.5) for the z_{L} 's are numerically unstable, in the sense that, if we use them indiscriminately, we can finish up with a final c in the general solution (1.9) different from the original one. But within the context of the continued fractions to which they give rise, Eqs. (2.5) are quite stable, as we shall see in the following section.

3. Continued Fractions

The first of relations (2.5) leads to the forward (increasing L) continued fraction,

$$
\begin{equation*}
z_{L-1}^{(f)}=-v_{L}+\frac{q_{L}}{v_{L}+v_{L+1}-} \frac{q_{L+1}}{v_{L+1}+v_{L+2}} \cdots \frac{q_{L+n-1}}{v_{L+n-1}-z_{L+n-1}^{(f)}} \tag{3.1a}
\end{equation*}
$$

and the second, to the backward (decreasing L) continued fraction,

$$
\begin{equation*}
z_{L}^{(b)}=v_{L}-\frac{q_{L}}{v_{L}+v_{L-1}-}-\frac{q_{L-1}}{v_{L-1}+v_{L-2}-} \cdots \frac{q_{L-n+1}}{v_{L-n+1}+z_{L-n}^{(b)}} \tag{3.1b}
\end{equation*}
$$

where n is a non-negative integer. In (3.1b), $0 \gtrless n \gtrless L$.
Change L into $-L$ in (3.1b). We have

$$
\begin{equation*}
z_{-L}^{(b)}=v_{-L}-\frac{q_{-L}}{v_{-L}+v_{-(L+1)}-} \frac{q_{-(L+1)}}{v_{-(L+1)}+v_{-(L+2)}} \cdots \frac{q_{-(L+n-1)}}{v_{-(L+n-1)}-z_{-(L+n)}^{(b)}} . \tag{3.1c}
\end{equation*}
$$

The continued fractions (3.1a) and (3.1c) are equivalent, if we identify $z_{-(L+n)}^{(b)}$ with $z_{L+n-1}^{(f)}$ and use property (c) of the Appendix with $c_{s}=-1$, to reduce (3.1c) to (3.1a). Note that $v_{-L}=-v_{L}, q_{-L}=q_{L}$ (see (1.1)). Write, then,

$$
\begin{equation*}
z_{-L}^{(b)}=z_{L-1}^{(f)}, \quad z_{L}=z_{L}^{(b)} \tag{3.2}
\end{equation*}
$$

where the second relation is a definition.
So we have managed to transform a forward continued fraction into a backward one by extending the L-field to all negative integers. Evidently, $z_{-(L+1)}$ is a solution of Eq. (1.8).

Now set (see (3.2))

$$
\begin{equation*}
z_{-(L+1)}=-\frac{d F_{L}}{d \rho} / F_{L}, \quad z_{L}=-\frac{d G_{L}}{d \rho} / G_{L} \tag{3.3}
\end{equation*}
$$

since, for the functions defined in (3.3), the continued fractions (3.1) are completely stable. In fact, for $L \gg \rho$, the initial convergents of (3.1) and the first terms of the right-hand-side expansions of (3.3) into power series [5] are the same.

For $L=0$ Eqs. (3.3) lead to the still missing relation between z_{0} and z_{-1} (note that for $L=0$ Eqs. (2.5) are meaningless, except if $\gamma=0$). Define, then, ϕ and ζ as follows:

$$
\begin{equation*}
F_{0}(\gamma, \rho)=\frac{\sin \phi}{\zeta^{1 / 2}}, \quad G_{0}(\gamma, \rho)=\frac{\cos \phi}{\zeta^{1 / 2}} \tag{3.4}
\end{equation*}
$$

Eliminating F_{0} and G_{0} between the Wronskian for these functions $[2,3]$ and Eqs. (3.4),

$$
\begin{equation*}
d \phi / d \rho=\zeta . \tag{3.5}
\end{equation*}
$$

Also define

$$
\begin{equation*}
\xi=\frac{1}{2} d(\log \zeta) /(d \rho)=\frac{1}{2} \frac{d \zeta}{d \rho} / \zeta \tag{3.6}
\end{equation*}
$$

Differentiating the logarithms of the reciprocals of Eqs. (3.4) with respect to ρ, we obtain, from (1.7), (3.5) and (3.6), z_{0} and z_{-1} expressed in terms of ζ, ζ and $\tan \phi$. Eliminating $\tan \phi$ between these expressions, we have

$$
\begin{equation*}
z_{0}=\xi+\frac{\zeta^{2}}{\xi-z_{-1}} \tag{3.7a}
\end{equation*}
$$

Noting that v_{0} and q_{0} were left undefined (see (1.1)), we set

$$
\begin{equation*}
v_{ \pm 0}= \pm \xi, \quad q_{0}=\zeta^{2}, \quad z_{0}=v_{+0}-\frac{q_{0}}{v_{-0}+z_{-1}} \tag{3.7b}
\end{equation*}
$$

Thus, the distinct continued fractions (3.1) can be reduced now to a single continued fraction,

$$
\begin{equation*}
z_{L}=v_{L}-\frac{q_{L}}{v_{L}+v_{L-1}-} \frac{q_{L-1}}{v_{L-1}+v_{L-2}-} \cdots, \tag{3.8}
\end{equation*}
$$

where L is positive, negative or null. Henceforward, the condition $0<n ₹ L$ for Eq. (3.1b) must be dropped.

It remains to determine ζ, independently of F_{0} and G_{0} (see (3.4)). Write $u_{0}=$ $G_{0}+i F_{0}=\exp (i \phi) / \zeta^{1 / 2}$. Then, by (3.5) and (3.6),

$$
\begin{equation*}
d\left[\log \left(1 / u_{0}\right)\right] /(d \rho)=\xi-i \zeta \tag{3.9}
\end{equation*}
$$

But (3.9) is a complex solution of Eq. (1.8) for $L=0$ (see (1.7)). The real part of this equation is

$$
\begin{equation*}
\frac{d \xi}{d \rho}=\xi^{2}-\zeta^{2}+1-\frac{2 \gamma}{\rho} \tag{3.10}
\end{equation*}
$$

the imaginary part is equal to (3.6). Eliminating ξ between Eqs. (3.6) and (3.10),

$$
\begin{equation*}
\zeta^{2}=1-\frac{2 \gamma}{\rho}+\zeta^{1 / 2} \frac{d^{2}\left(\zeta^{-1 / 2}\right)}{d \rho^{2}} \tag{3.11}
\end{equation*}
$$

We already know how to solve Eq. (3.11) for large $L[6,7]$. The integral of Eq. (3.11) must satisfy the condition

$$
\begin{equation*}
\zeta(\gamma, \rho) \xrightarrow[\rho \rightarrow \infty]{ } 1-\gamma / \rho \tag{3.12}
\end{equation*}
$$

derived from $\phi(\gamma, \rho) \underset{\rho \rightarrow \infty}{\rightarrow} \rho-\gamma \log (2 \rho)+\arg \Gamma(1+i \gamma)[2,3]$ by means of (3.5).
Now consider some aspects of the previous theory when $\gamma=0$, i.e., the case of spherical functions of a free wave [4].

From (1.10),

$$
\begin{equation*}
F_{0}(0, \rho)=\sin \rho, \quad G_{0}(0, \rho)=\cos \rho \tag{3.13}
\end{equation*}
$$

Squaring and adding Eqs. (3.4) we have, from (3.13), $\zeta \equiv 1$ and, from (3.6), $\xi \equiv 0$. Equations (3.7b) yield, then,

$$
\begin{equation*}
v_{ \pm 0}=0, \quad q_{0}=1, \quad z_{0}=-1 / z_{-1} \tag{3.14}
\end{equation*}
$$

in agreement with Eqs. (2.5) for $L=\gamma=0$.
Note that $z_{0}(0, \rho)$ is a solution of the corresponding Riccati equation, Eq. (1.8), if $z_{-1}(0, \rho)$ is also a solution.

Next, from (3.8) we obtain, setting $L=\gamma=0$,

$$
\begin{equation*}
\tan \rho=\frac{\rho}{1-} \frac{\rho^{2}}{3-} \frac{\rho^{2}}{5-} \cdots \tag{3.15}
\end{equation*}
$$

if property (c) of the Appendix with $c_{s}=-\rho$ is used.
Equation (3.8) yields, for $L=-1$ and $\gamma=0$,

$$
\begin{equation*}
\cot \rho=\frac{1}{\rho}-\frac{\rho}{3-} \frac{\rho^{2}}{5-} \frac{\rho^{2}}{7--} \cdots \tag{3.16}
\end{equation*}
$$

again using (c), with $c_{s}=-\rho$. Evidently, we can derive (3.16) dircetly from (3.15), noting that $\cot \rho=1 / \tan \rho$.

Continued fractions (3.15) and (3.16) are well known [3] and represent $\tan \rho$ and $\cot \rho$ for any ρ, even at the points where these functions become infinite: the zeros of $\cos \rho$ for $\tan \rho$ and the zeros of $\sin \rho$ for $\cot \rho$.

Similarly, the continued fraction (3.8) diverges at the zeros of $F_{L}(\gamma, \rho)$ and $G_{L}(\gamma, \rho)$, according to whether L is either negative or positive (null). At any other point, (3.8) converges, since we can develop the continued fraction up to the term $q_{-L .}\left|v_{-L_{0}}-z_{-\left(I_{0}+1\right)}\right|$ (see (3.1c)) and if L_{0} is large enough, $z_{-(I+1)}$ may be determined with the precision we like [5].

4. Numerical Applications

Tables I to III show examples of the continued fractions (3.8) with negative and positive L. The columns headed by $A_{L}^{(n)}, B_{L}^{(n)}$ and A_{n}, B_{n} are calculated according to property (b) of the Appendix.

From the Wronskian for F_{L} and $G_{L}[2,3]$ and from (3.3),

$$
\begin{equation*}
G_{L}=1 /\left(d F_{L} / d \rho+z_{L} F_{L}\right) . \tag{4.1}
\end{equation*}
$$

TABLE I

$$
\gamma=20, \rho=10
$$

L	n	$A_{i}^{(n)}$		$B_{L}^{(n)}$		$z_{-(l+1)}=-\frac{d F_{i}}{d \rho} / F_{l}$	
0	17	$0.85874370 E$	14	$-0.48634100 E$	14	$-0.17657234 E$	01
1	16	$-0.39393671 E$	13	$0.22236185 E$	13	$-0.17716020 E$	01
2	15	$0.33090835 E$	12	-0.18555982E	12	$-0.17832974 E$	01

Note. Here $z_{-(L+1)} \simeq z_{-(L+1)}^{(n)}, z_{-(L+1)}^{(n)}$ being the convergent of lowest order satisfying the condition $\left|z_{-(U+1)}^{(n-1)}-z_{-(L+1)}^{(n)}\right|<10^{-9}$.

TABLE II

$$
\gamma=20, \rho=10
$$

L	n	$A_{l}^{(n)}$		$B_{l}^{(n)}$		$z_{L}=-\frac{d G_{L}}{d \rho} / G_{t}$	
16	15	$0.41023715 E$	13	$0.17450763 E$	13	$0.23508264 E$	01
17	13	$0.96083956 E$	10	$0.39697762 E$	10	$0.24203872 E$	01
18	12	0.11494972 E	10	$0.46127766 E$	09	$0.24919854 E$	01

Note. $z_{L} \simeq z_{L}^{(n)}$, where $z_{L}^{(n)}$ is the convergent of lowest order obeying the condition $z_{l}^{(n-1)}-z_{L}^{(n)}<10^{-9}$. Note that $n<L-1$, since $v_{ \pm n}$ and q_{n} (see (3.7b)) have not been calculated for $\gamma \neq 0$.
G_{L} is then determined since we know how to calculate F_{L} and $d F_{L} / d \rho$ [5], as well as $z_{i} ;(2.3)$ and (1.5) may now be used in a forward recurrence procedure. Note, however, that a low order G_{L} always requires solving Eq. (3.11) for ζ (see Table II), which is not dealt with in this work. A few examples of the calculation of $F_{L}, d F_{L} / d \rho$, G_{I} and $d G_{I} / d \rho$ are shown in Table IV.

TABLE III
Determination of $z_{7}(0,10)=-\left(\left(d g_{7} / d \rho\right) / g_{7}\right)_{\rho=10}$

n	A_{n}	B_{n}		$z_{7}^{(n)}(0,10)-v_{7}(0,10)$
1	$-0.10000000 E \quad 01$	$0.13000000 E$	01	$-0.76923077 E \quad 00$
2	$-0.11000000 E \quad 01$	$0.43000000 E$	00	$-0.25581395 E \quad 01$
3	$0.10000000 E-01$	$-0.91300000 E$	00	$-0.10952903 E-01$
\ldots
26	$-0.35242081 E \quad 04$	$0.14283532 E$	04	$-0.24673226 E \quad 01$
27	$0.12702792 E \quad 05$	$-0.51484120 E$	04	$-0.24673224 E \quad 01$
28	$-0.48557241 E \quad 05$	$0.19680136 E$	05	$-0.24673224 E \quad 01$
\ldots	- \cdot	\cdots		...

Note. In this case $v_{ \pm 0}=0, q_{0}=1$ (see (3.14)).
TABLE IV

$$
\gamma=20, \rho=10
$$

I	F_{L}	$d F_{L} / d \rho$	G_{L}	$d G_{L} / d \rho$		
16	$0.14629595 E-15$	$0.35599119 E-15$	$0.14287601 E$	16	$-0.33587669 E$	16
17	$0.41983684 E-16$	$0.10512308 E-15$	$0.48369967 E$	16	$-0.11707405 E$	17
18	$0.11436679 E-16$	$0.29465746 E-16$	$0.17251557 E$	17	$-0.42990628 E$	17

Note. The columns headed by F_{L} and $d F_{L} / d \rho$ are calculated as in Ref. [5]. Since the z_{L} 's have been determined already (Table II), the G_{L} 's can be now obtained from Eq. (4.1) and the $d G_{L} / d \rho$'s, from $d G_{L} / d \rho=-z_{L} G_{L}$ (see (3.3)).

TABLE V
Determination of $z_{1}(0, \pi / 2)-v_{1}(0, \pi / 2)$

n	A_{n}	B_{n}	$z_{1}^{(n)}(0, \pi / 2)-v_{1}(0, \pi / 2)$		
1	$-0.10000000 E$	01	$0.63661977 E$	00	$-0.15707963 E$
2	$0.63661977 E$	00	$-0.14052847 E$	01	$-0.45301835 E$
0	\ldots	\cdots	\cdots		
\cdots	\cdots	$0.59408697 E$	05	$-0.26645448 E-10$	
9	$-0.15829713 E-05$	$-0.63665032 E$	06	$-0.20620486 E-12$	
10	$0.13128039 E-06$	\cdots	\cdots		
\cdots	\cdots				

Note. The function $z_{0}(0, \rho)=\cot \rho$ becomes infinite for $\rho=\pi / 2$. Accordingly, by (2.5). $\lim _{n \rightarrow \infty} z_{1}^{(n)}(0, \pi / 2)-2 / \pi=0$. Note that $v_{1}(0, \pi / 2)=2 / \pi$.

Continued fraction (3.8) may be used for the determination of the zeros of $F_{L}(\gamma, \rho)$ and $G_{L}(\gamma, \rho)$. Table V illustrates the simple case of $\pi / 2$, zero of $\cos \rho$.

All the calculations were performed an Coimbra University's SIGMA 5 XEROX computer using double-precision FORTRAN-IV programmes.

Appendix

Let [3, p. 19]

$$
\begin{equation*}
f=b_{0}+\frac{a_{1}}{b_{1}+} \frac{a_{2}}{b_{2}+} \cdots \frac{a_{n}}{b_{n}+} \cdots \tag{a}
\end{equation*}
$$

the nth convergent of $f\left(b_{0}\right.$ plus the first n fractions in (a) $)$ is given by $f_{n}=A_{n} / B_{n}$, where

$$
\begin{array}{ll}
A_{n}=b_{n} A_{n-1}+a_{n} A_{n-2} ; & B_{n}=b_{n} B_{n-1}+a_{n} B_{n-2} \tag{b}\\
A_{0}=b_{0}, \quad A_{-1}=1 ; & B_{0}=1, \quad B_{-1}=0
\end{array}
$$

If $\left\{c_{s}\right\}$ is a set of non-vanishing elements,

$$
\begin{equation*}
f_{n}=b_{0}+\frac{c_{1} a_{1}}{c_{1} b_{1}+} \frac{c_{1} c_{2} a_{2}}{c_{2} b_{2}+} \cdots \frac{c_{n-1} c_{n} a_{n}}{c_{n} b_{n}} \tag{c}
\end{equation*}
$$

The developments (a) and (c) are said to be equivalent.

References

1, L. Infeld and T. E. Hull, Rev. Mod. Phys. 23 (1951), 21-68.
2. A. Messiah, "Quantum Mechanics," Vol. 1, Appendix B, North-Holland, Amsterdam, 1961.
3. M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," p. 537 n., Dover, New York, 1965.
4. P. de A. P. Martins, J. Comput. Phys. 25 (1977), 182-193.
5. P. de A. P. Martins, J. Comput. Phys. 31 (1979), 293-299.
6. P. de A. P. Martins, J. Phys. B (Proc. Phys. Soc.) 1 (1968), 154-162.
7. P. de A. P. Martins, Proc. Cambridge Philos. Soc. 69 (1971), 167-173.

Received: July 30, 1980
Pedro de A. P. Martins
Departamento de Física Universidade de Coimbra 3000 Coimbra, Portugal

