
JOURNAL OF COMPUTATIONAL PHYSICS 41, 223-230 (1981) 

Note 

Spherical Coulomb Functions: 
Recurrence Relations and Continued Fractions 

In this note we find continued fractions for the ratios -(dF,/dp)/F,, and -(dG,/dp)/G,, 
F,,(y,p) and G,(y,p) being respectively the regular and the irregular spherical Coulomb 
functions of Lth order. 

1. INTRODUCTION 

Consider the linear operators h,’ and h; [ 11, 

L 
lp-+;, (1.1) 

P 

defined in the domain D = (0 < p < + co, -co < y < + co) for any positive integer: 
L = 1, 2,... . Using (1.1) we can write the radial equations for the spherical Coulomb 
functions [2], 

L(L -t- 1) 
P2 I UL (Y, P> = 0, (1.2) 

also defined in D and for any non-negative order (L = 0, l,...), in two different ways: 

h,h,+u,=u,, (1.3a) 

hLt+,K+,ur.=u,. (1.3b) 

For L = 0 only Eq. (1.3b) exists. 
On multiplying on the left (1.3a) by h,’ and (1.3b) by h;, r and comparing the 

results with (1.3b) and (1.3a), respectively, one has 

24 ,/+I =K+,uL, u,-, = h,+u,. (1.4) 

Multiplying the first Eq. (1.4) by qz:, and the second by qy2, and adding these 
products, one obtains the familiar three-term recurrence formula, 

9YUL-, +9E,u,+* = (0, + vL+I)%’ 
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(1.5) 
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The uL(y,p) in all the previous equations may be written as 

~L(Y, P) = aF,(y, P) + bG,,b P>, (1.6) 

where a and b are constants and F&,p) and G,(y,p) are, respectively, the regular 
and the irregular spherical Coulomb functions [2,3]. 

Each one of Eqs. (1.2) can be associated with a Riccati equation. Define 

ZI. = 4og(lluL)ll(dP) = - 2 
i 
u1: 

Differentiating zL(y, p) with respect to p and eliminating the term (&ul/dp2)/u,~ 
between the result so obtained and Eq. (1.2), one has 

dz 2y L(L+ 1) --L=Z;+l--- 
4 P P2 . 

The general integral of this equation is (we take a/b = c in (1.6)) 

ZL = -WF,ldp + dGr,ldp>l(cF~ + Gd. (1.9) 

Note that for y = 0 the radial waves defined above become the spherical functions of 
a free wave. Accordingly, we have [2,4] 

FL@ P> = fL@> = Pj,@)Y GL(OY PI = kTL@) = P%,@), (1.10) 

where j,@) and nL@) are the spherical Bessel functions. 

2. RECURRENCE RELATIONS FOR THE zI,(y,p) 

Introduce the functions w; (y, p) and w,’ (y, p) as follows: 

- 
WL = vLtI+zL, WL t = v, - ZL. (2.1) 

By addition, 

~,+4=vL+vLt, (2.2) 

and substituting (2.1) into (1.3) (see (1.1) and (1.7)), 

92/: I UL + I = OL UL Y  qt/2u,. - , = WLf u,. (2.3) 

If we eliminate w, and w,’ between Eqs. (2.2) and (2.3), we recover the three-term 
recurrence formula (1.5). But we can follow another line of thought: on multiplying 
Eqs. (2.3), with L changed into L - 1 in the first, by each other, we obtain 

Wt-l w,‘=c?r. (2.4) 
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or, according to (2.1) 

225 

Z L-l =-VI> t&9 ZL = v, - 
(IL 

VI. +zL-I 

Recurrence relations (2.5) for the zL’s are numerically unstable, in the sense that, if 
we use them indiscriminately, we can finish up with a final c in the general solution 
(1.9) different from the original one. But within the context of the continued fractions 
to which they give rise, Eqs. (2.5) are quite stable, as we shall see in the following 
section. 

3. CONTINUED FRACTIONS 

The first of relations (2.5) leads to the forward (increasing L) continued fraction, 

ZyL 1 = -v, t 4L 4L+1 qL+n-I 
. . . 

UL +vL+l- vL+l +v,+z- V 
ct-) ’ 

L+n-1 -zL+n-I 

and the second, to the backward (decreasing L) continued fraction, 

c?L 9L-1 
ZL 

(b) = v,- - qL--n+l . . . 

VL + VL-l - v,-I t UL-2 - vL-n+,+Z;by 

where II is a non-negative integer. In (3.lb), 0 < n < L. 
Change L into -L in (3.lb). We have 

(3.la) 

(3.lb) 

Z(b) - v  4-L q-(LtlJ q-(L+n-I, 
-I. - -I. - 

. . . 

V-L + v-w+ 1) - v-(LII) +v-CL-tZ, - 
(b) * 

V-(Ltn-1) -Z-CL+“) 

(3. lc) 

The continued fractions (3.la) and (3.1~) are equivalent, if we identify z’!‘:~+,,) 
with zi$),_, and use property (c) of the Appendix with c, = -1, to reduce (3.1~) to 
(3. la). Note that u-L = -v,-, qhL = qL (see (1.1)). Write, then, 

Z(b) _ ZW (b) 
-I,- L-l, zI,=zL 3 (3.2) 

where the second relation is a definition. 
So we have managed to transform a forward continued fraction into a backward 

one by extending the L-field to all negative integers. Evidently, zPcL + i) is a solution 
of Eq. (1.8). 
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Now set (see (3.2)) 

Z -(Ltl) = (3.3) 

since, for the functions defined in (3.3), the continued fractions (3.1) are completely 
stable. In fact, for L s p, the initial convergents of (3.1) and the first terms of the 
right-hand-side expansions of (3.3) into power series [5] are the same. 

For L = 0 Eqs. (3.3) lead to the still missing relation between z0 and z _, (note that 
for L = 0 Eqs. (2.5) are meaningless, except if y = 0). Define, then, $ and [ as 
follows: 

sin 4 
FO(IG P> = F > 

cos 4 
Gob PI = 7 + 

Eliminating F, and G, between the Wronskian for these functions [2,3] and 
Eqs. (3.4), 

Also define 

4ldp = C. (3.5) 

t = + d(log C)/(dp) = + [. (3.6) 

Differentiating the logarithms of the reciprocals of Eqs. (3.4) with respect to p, we 
obtain, from (1.7), (3.5) and (3.6), z,, and z _, expressed in terms of <, [ and tan 4. 
Eliminating tan I$ between these expressions, we have 

Noting that u0 and q,, were left undefined (see (1. 1 )), we set 

u*o = *d 40 = c2, zo=uto- 40 
u-0 + z-1 

(3.7a) 

Thus, the distinct continued fractions (3.1) can be reduced now to a single continued 
fraction, 

ZL = v, - 
qL 4L-1 

u,+v,-,- UL-,+UL-2- ***’ 
(3.8) 

where L is positive, negative or null. Henceforward, the condition 0 < n < L for 
Eq. (3.lb) must be dropped. 
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It remains to determine c, independently of F,, and G, (see (3.4)). Write u,, = 
Go + il;, = exp(i$)/C”‘. Then, by (3.5) and (3.6), 

4 log( l/u,)]/(dp) = C - iC. (3.9) 

But (3.9) is a complex solution of Eq. (1.8) for L = 0 (see (1.7)). The real part of this 
equation is 

(3.10) 

the imaginary part is equal to (3.6). Eliminating l between Eqs. (3.6) and (3.10) 

(* = l _ F + [‘/2 d2;;2”2’. 

We already know how to solve Eq. (3.11) for large 
Eq. (3.11) must satisfy the condition 

m, P> x 1 - YIP 

L 16, 71. The integral of 

(3.12) 

derived from @(y, p) +a p - Y log(2p) + arg r(l + iY) [2,3 1 by means of (3.5). 

Now consider some aspects of the previous theory when y = 0, i.e., the case of 
spherical functions of a free wave [4]. 

From (1. lo), 

(3.11) 

F&P) = sinp, G,(O, p) = cos p. (3.13) 

Squaring and adding Eqs. (3.4) we have, from (3.13), 4~ 1 and, from (3.6), <= 0. 
Equations (3.7b) yield, then, 

V - 0, -to - qo= 1, zrJ=-l/z-,, (3.14) 

in agreement with Eqs. (2.5) for L = y = 0. 
Note that ~~(0, p) is a solution of the corresponding Riccati equation, Eq. (1.8), if 

z _ ,(O, p) is also a solution. 
Next, from (3.8) we obtain, setting L = y = 0, 

P P2 P2 tanp =1-3-5- . . . . 

if property (c) of the Appendix with c, = -p is used. 
Equation (3.8) yields, for L = -1 and y = 0, 

(3.15) 

1 P P2 P2 COtp’p-3--~ a**, (3.16) 
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again using (c), with c, = -p. Evidently, we can derive (3.16) directly from (3.15), 
noting that cot p = l/tan p. 

Continued fractions (3.15) and (3.16) are well known [3] and represent tanp and 
cot p for any p, even at the points where these functions become infinite: the zeros of 
cos p for tan p and the zeros of sin p for cot p. 

Similarly, the continued fraction (3.8) diverges at the zeros of F,(y,p) and G,(y, p), 
according to whether L is either negative or positive (null). At any other point, (3.8) 
converges, since we can develop the continued fraction up to the term 
q~,d[v_,o-z_(,ll+,,] (see (3.1~)) and if L, is large enough, z~(,+,, may be deter- 
mined with the precision we like [5]. 

4. NUMERICAL APPLICATIONS 

Tables I to III show examples of the continued fractions (3.8) with negative and 
positive L. The columns headed by A, , (‘) BI”’ and A,,, B, are calculated according to 
property (b) of the Appendix. 

From the Wronskian for F, and G,, [2,3] and from (3.3), 

G,. = ll(dF,ldp + =i.Fd. (4.1) 

TABLE I 

y = 20, p = 10 

L n *‘“I 
1. 

p 
I 

0 17 0.8587437OE 14 -0.486341006 14 -0.17657234E 01 
1 16 -0.39393671E 13 0.22236185E 13 -0.177160206 01 
2 15 0.33090835E 12 -0.18555982E 12 -0.17832974x? 01 

Note. Here z_ IIf) ,“, 
,,.+,)=z-(l tl,’ z-(Lil) being the convergent of lowest order satisfying the condition 

Iz”,:‘,)-z”;,.+,,l < 1om9. 

TABLE II 

‘/=20,/I= 10 

L n G, 

16 15 0.41023715E 13 0.17450763E 13 0.235082646 01 
17 13 0.960839566 10 0,39697762E 10 0.24203872E 01 
18 12 0.114949726 10 0.46 127766E 09 0.24919854.E 01 

Note. ZL E $1, where ,“) 
ZI. is the convergent of lowest order obeying the condition 

(II-l) 
=r. - zi,“’ < 10e9. Note that n e L - 1, since v fO and q. (see (3.7b)) have not been calculated for 

y # 0. 
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G,- is then determined since we know how to calculate FL and dFJdp [5 J, as well as 
2,. ; (2.3) and (1.5) may now be used in a forward recurrence procedure. Note, 
however, that a low order G, always requires solving Eq. (3.11) for 5 (see Table II), 
which is not dealt with in this work. A few examples of the calculation of F,, dF,/dp, 
G,, and dGJdp are shown in Table IV. 

TABLE III 

Determination of z,(O, 10) = -((dg,/dp)/g,),= ,0 

n An Bn zyyo, 10) - c,(O, 10) 

1 -0.10000000E 01 0.13000000E 01 -0.16923017E 00 
2 -0.11000000E 0 I 0.43OOOOOOE 00 -0.25581395E 01 
3 0.1000OOOOE -01 -0.9 13OOOOOE 00 -0.10952903E -01 

. . . . . . . 
26 -0.35242081E 04 0.14283532E 04 -0.24673226E 01 
21 0.12702792E 05 -0.5148412OE 04 -0.24673224E 01 
28 -0.48557241E 05 0.196801366 05 -0.246732246 01 
. . . . . . . . . 

Note. In this case ~1 *o= 0, q. = 1 (see (3.14)). 

TABLE IV 

y= 2o,p= 10 

dF,ldP GL 

16 0.14629595E -15 0.355991196 -15 0.14287601E 16 -0.335876696 16 
17 0.41983684E-16 0.105123088 -15 0.48369967E 16 -0.11707405E 17 
18 0.114366796 -16 0.29465746E -16 0.172515576 17 -0.42990628E 17 

Note. The columns headed by FL and dF,/dp are calculated as in Ref. [5]. Since the zL’s have been 
determined already (Table II), the G,‘s can be now obtained from Eq. (4.1) and the dG,/dp's, from 
dG,/dp = -zLGL (see (3.3)). 

TABLE V 

Determination of .z,(O, 7r/2) - v,(O, n/2) 

n 4 B” z:“‘(O, 7[/2) - u,(O, n/2) 

I -0.10000000E 01 0.63661977E 00 -0.157079636 01 
2 0.63661977E 00 -0.14052847E 01 -0.45301835E 00 
. . . . . . . . . . . 

9 -O.l5829713E-05 0.594086978 05 -0.26645448E -10 
10 0.131280396-06 -0.63665032E 06 -0.20620486E -12 
. . . . . . . . . . 

Nofe. The function ~~(0, p) = cot p becomes infinite for p = 7r/2. Accordingly, by (2.5). 
lim n-m zj”)(O, n/2) - 2/72 = 0. Note that u,(O, 7r/2) = 2/7r. 
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Continued fraction (3.8) may be used for the determination of the zeros of F,(y, p) 
and G,(y, p). Table V illustrates the simple case of 7r/2, zero of cos p. 

All the calculations were performed an Coimbra University’s SIGMA 5 XEROX 
computer using double-precision FORTRAN-IV programmes. 

APPENDIX 

Let [3,p. 191 

f=b,+YLa2...~ . . . . 
b,+ b,+ b,+ ’ (4 

the nth convergent of S (b, plus the first n fractions in (a)) is given by f,, = A./B,, , 
where 

A, = b,A,-, + anAn-2; B, = b,,B,-, + a,$,_,; 

A,=b,, A_,= 1; B,= 1, B-,=0. 
(b) 

If (c,) is a set of non-vanishing elements, 

cIal cIv2 
fn=bo+-------.. 

C n-Icnan 

c, b,+ c,b,+ cnbn . 
(cl 

The developments (a) and (c) are said to be equivalent. 
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